An Invariant of Finite Group Actions on Shifts of Finite Type
نویسندگان
چکیده
We describe a pair of invariants for actions of finite groups on shifts of finite type, the left-reduced and right-reduced shifts. The left-reduced shift was first constructed by U. Fiebig, who showed that its zeta function is an invariant, and in fact equal to the zeta function of the quotient dynamical system. We also give conditions for expansivity of the quotient, and applications to combinatorial group theory, knot theory and topological quantum field theory.
منابع مشابه
Coordinate finite type invariant surfaces in Sol spaces
In the present paper, we study surfaces invariant under the 1-parameter subgroup in Sol space $rm Sol_3$. Also, we characterize the surfaces in $rm Sol_3$ whose coordinate functions of an immersion of the surface are eigenfunctions of the Laplacian $Delta$ of the surface.
متن کاملMulti-dimensional Symbolic Dynamical Systems
The purpose of this note is to point out some of the phenomena which arise in the transition from classical shifts of finite type X ⊂ AZ to multi-dimensional shifts of finite type X ⊂ AZd , d ≥ 2, where A is a finite alphabet. We discuss rigidity properties of certain multi-dimensional shifts, such as the appearance of an unexpected intrinsic algebraic structure or the scarcity of isomorphisms ...
متن کاملTranslation invariant surfaces in the 3-dimensional Heisenberg group
In this paper, we study translation invariant surfaces in the 3-dimensional Heisenberg group $rm Nil_3$. In particular, we completely classify translation invariant surfaces in $rm Nil_3$ whose position vector $x$ satisfies the equation $Delta x = Ax$, where $Delta$ is the Laplacian operator of the surface and $A$ is a $3 times 3$-real matrix.
متن کاملOn Some New Invariants for Strong Shift Equivalence for Shifts of Finite Type
We introduce a new computable invariant for strong shift equivalence of shifts of finite type. The invariant is based on an invariant introduced by Trow, Boyle, and Marcus, but has the advantage of being readily computable. We summarize briefly a large-scale numerical experiment aimed at deciding strong shift equivalence for shifts of finite type given by irreducible 2 × 2matrices with entry su...
متن کاملKrieger’s Finite Generator Theorem for Actions of Countable Groups Ii
We continue the study of Rokhlin entropy, an isomorphism invariant for p.m.p. actions of countable groups introduced in the previous paper. We prove that every free ergodic action with finite Rokhlin entropy admits generating partitions which are almost Bernoulli, strengthening the theorem of Abért–Weiss that all free actions weakly contain Bernoulli shifts. We then use this result to study the...
متن کامل